
Data Layer TS
The data lake for time series data.

DLTS at One Glance

• Store & retrieve equidistant numerical time series data

• Manage and share millions of time series effortlessly

• High performance access

• Aggregation Functions

• Simple RESTful API

Sections

Functionality

Data Structure

Frequency

All timestamps inside a time
series follow a specific

frequency

Values

For every timestamp inside a
time series a numeric value

can be stored

Creation Timestamp

Optional: Store an additional
creation timestamp for every

value

Data Structure Examples

Timestamp Temperature Creation Timestamp

2020-01-01T01:00:00Z 18.446 2020-01-01T01:01:22Z

2020-01-01T02:00:00Z 19.647 2020-01-01T02:01:23Z

2020-01-01T03:00:00Z 19.146 2020-01-01T03:01:99Z

Timestamp Max Price

2020-01-01T00:01:00Z 221.19912127

2020-01-01T00:02:00Z 225.49124811

2020-01-01T00:03:00Z 231.52498213

Core Functionality

• Retrieve data from any specific time span from any specific time series
• Raw data

• Aggregated over time

• Aggregated over multiple time series

• Aggregated to another time resolution

• Insert or update data in specific time series for any specific time
• Only insert missing values

• Overwrite all values

• Overwrite values where creation timestamp is equal or higher

Included Usability Features

• Data models
• Point model for easy integration

• Vector model for high performance and matrix scenarios

• Error response model
• Reference to the affected time series

• Message containing problem details

• ACID compliant time series operations
• Transactional time series manipulations

Included Usability Features

• Metadata management
• Access rights to time series

• Retention policies for time series

• Get, create or delete time series

• Auto time series creation on first insert

• Auto deletion of expired data

• Auto background maintenance jobs

API Details

• HTTP RESTful API without query language

• Supported content formats
• JSON

• CSV

• MessagePack

• Optional content compression

• Swagger API documentation

Scalability

Cloud Scalability

• Vertical VM scalability is supported
• Horizontal disk scaling is enabled through an internal disk load balancer

• Public cloud providers support big VM sizes
• Hundreds of cores

• Multiple TB of RAM

• Horizontal VM scalability is not supported
• Includes cluster communication overhead

• A VM cluster costs the same as one vertically scaled VM with the total cluster performance

Vertical Scalability

More Cores
+ Parallel requests

+ Overall speed

More RAM
+ In-memory data capacity

+ Buffer capacity

More IOPS
+ Insert performance

+ Maintenance speed

Faster Network
+ Throughput limit

Higher Clock Rate
+ Overall speed

Better SIMD Support
+ Aggregation speed

Scaling Disk Performance

• Horizontal scaling partitions with disk load balancing solution
• Balances the load equally on all configured partitions

• Constant maximum insert performance through scalable binary file formats
• Header files contain the recent part of a time series

• History files contain the historical part of a time series

• The content move from the header files into the history files runs decoupled from the user
requests in the background maintenance

Scaling Memory Performance

• In-Memory database solution for time series content management
• Content is stored in memory using a data structure optimized for fast parallel data access

• Tracks the time series usage for inserts and selects

• Keeps recently needed parts of time series when the in-memory capacity is reached

• Memory pooling solution for low memory pressure
• Maximum internal buffer reuse

Load Testing

• Free load-testing tool
• Source code available on GitHub

• Can be used to find the right VM size for a specific workload

• Continuous time series deliveries can be simulated

• Scenarios can include all formats, models and aggregations

• Results show unmatched performance

Load Testing Examples

Test client 1:
• 8 Cores

• 16 GB RAM

• ~1 Gbps download

• ~50 Mbps upload

Test client 2:
• 8 Cores

• 16 GB RAM

• ~3.5 Gbps sync

Test server:
• 10 Cores

• 64 GB RAM

• ~2.5 Gbps sync

• 10.000 IOPS

Use Cases

Use Case Examples

Financial Data

Open-high-low-close prices

Weather Data

Grid based weather forecasts

IoT Data

Sensor measurements

Financial Data Example

• Save data at the highest possible resolution
• Open-high-low-close-volume values in separated time series

• Highest available or needed frequency of aggregated trades

• Aggregate to any other time resolution dynamically
• Use first, maximum, minimum, last and sum aggregations to aggregate all open-high-low-close-

volume values to any time resolution in milliseconds

• Aggregate over any time span dynamically
• Select first, maximum, minimum, last and sum aggregations from any large historical time

period in milliseconds

Weather Data Example

• Save data at the highest possible resolution
• One time series per grid point per variable

• Highest available frequency

• Always keep the most recent forecasts in the time series
• Override old data based on the forecast timestamp of the data to ensure the most recent

forecast for each time interval is stored

• Aggregate grid point time series dynamically
• Aggregate hundreds of grid points inside a postal code and select the minimum, maximum and

average value from all time series for each time interval in milliseconds

IoT Data Example

• Save data at the highest possible resolution
• One time series for each sensor measurement

• Highest available frequency

• Aggregate millions of historical data points dynamically
• Select aggregations over one large time interval or change the resolution and get the

timestamp of the maximum and minimum in addition to the maximum and minimum itself

• Aggregate thousands of sensor time series dynamically
• Aggregate any cluster of sensors to the average time series of all contained sensor values

• Get a time series reference out of the cluster to the time series, which has the maximum or
minimum value stored for each time interval

Why choose DLTS?

• Data must be shared with many concurrent users

• High performance data access is needed

• Data should be monetized through API marketplaces

• Centralized time series store for all available series is needed

• Data lake for time series data is needed

Thank You
Data Layer TS - It’s about time.

API: https://datalayerts.com

Mail: info@clapsode.com

https://datalayerts.com/
mailto:info@clapsode.com

